PROGRAM LINIER KELAS 11


Adek-adek Matematika Lovera pada kesempatan kali ini ita akan membahas mengenai Model Matematika dan Pengertian Program Linier. awalan yang tepat adalah kita mempelajari Rumus Matematika Dasar mengenai Program Linier. Program linear sering juga kita sebut sebagai optimasi linear yaitu suatu program yang bisa digunakn untuk memecahkan masalah mengenai optimalisasi atau optimasi. Di dalam masalah optimasi linear, batasan atau kendalanya bisa kita terjemahkan ke dalam bentuk model matematika atau sistem pertidaksamaan linear. Nilai-nilai peubah yang memenuhi suatu system pertidaksamaan linear berada pada suatu himpunan penyelesaian yang mempunyai berbagai kemungkinan penyelesaian. Dari berbagai kemungkinan penyelesaian tersebut terdapat sebuah penyelesaian yang memberikan hasil paling baik (penyelesaian optimum). Jadi dapat disimpulkan bahwa tujuan dari masalah optimasi linear adalah untuk mengoptimumkan (memaksimalkan atau meminimumkan) sebuah fungsi f. Fungsi f ini disebut dengan fungsi sasaran, fungsi tujuan, atau fungsi objektif.
Masalah optimasi linear seperti yang telah dijelaskan di atas banyak dijumpai dalam bidang produksi barang, distribusi barang, dalam bidang ekonomi, dan bidang-bidang lainnya yang termasuk ke dalam kajian riset operasional.

Sudah dijelaskan di atas bahwa dalam memecahkan masalah program linear kita harus bisa menerjemahkan terlebih dahulu mengenai kendala-kendala yang terdapat di dalam masalah program linear ke dalam bentuk perumusan matematika. Proses tersebut adalah yang dinamakan dengan model matematika. Model matematika dapat didefinisikan sebagai suatu rumusan matematika yang diperoleh dari hasil penafsiran seseorang ketika menerjemahkan suatu masalah program linear ke dalam Bahasa matematika. Suatu model matematika dikatakan baik apabila di dalam model tersebut hanya memuat bagian-bagian yang diperlukan saja.
Untuk memahaminya dengan lebih mudah, perhatikan beberapa contoh pembuatan model matematika di bawah ini:

Contoh Soal Model Matematika dan Pembahasannya

Contoh 1 :
Mas Bejo membeli 6 buku tulis dan 8 pensil di suatu toko buku. Untuk itu Mas Bejo harus membayar Rp.6.900. Sedangkan Bang Jarwo hanya membeli 1 buah buku tulis dan 1 buah pensil dengan harga Rp.1.050. apabila harga dari sebuah buku rupiah dan sebuah pensil dinyatakan dengan x dan y, buatlah model matematika dari permasalahan tersebut!

Jawab:
Berdasarkan jumlah uang yang dibayar oleh Mas Bejo, didapat hubungan:
6x + 8y = 6.900
Berdasarkan jumlah uang yang dibayar oleh Bang Jarwo, didapat hubungan:
x+ y = 1.050
Maka model matematikanya adalah:
 6x + 8y = 6.900 dan
   x +   y = 1.050 dengan x dan y ε C


Contoh 2:
Seorang siswa memilih jurusan IPA, jika memenuhi syarat-syarat sebagai berikut:
a.) Jumlah nilai Matematika dan Fisika tidak boleh kurang dari 12
b.) Nilai masing-masing pada pelajaran tersebut tidak boleh kurang dari 5
Buatlah model matematika yang bisa digunakan sebagai patokan agar seorang siswa bisa memilih jurusan IPA!

Jawab:
Kita misalkan nilai matematika = x dan nilai fisika = y , maka dari syarat a.) diperoleh hubungan:
x + y ≥ 12
Dan dari syarat b.) diperoleh hubungan:
x ≥ 5 dan y ≥ 5
maka, model matematika yang dapat digunakan untuk patokan agar seorang siswa bisa memilih jurusan IPA adalah:
x ≥ 5 dan y ≥ 5, dan  x + y ≥ 12 ε C



Contoh 3:
Sebuah lahan parker hanya dapat menampung 200 mobil sedan. Apabila tempat tersebut digunakan untuk memarkir Bis, maka 1 Bis akan menempati luas yang sama dengan 5 buah mobil sedan. Apabila di lahan tersebut diparkir x Bis dan y Sedan, tentukanlah model matematikanya!

Jawab:
Misalkan untuk memarkir sebuah mobil sedan diperlukan luas rata-rata L m2, maka luas lahan parker yang tersedia adalah 200L m2 (L > 0).
Untuk memarkir sebuah Bis diperlukan lahan seluas 5L m2 , Sehingga untuk memarkir x Bis dan y Sedan diperoleh hubungan:
(5L)x + (L)y ≤ 200
5x + y ≤ 200
Karena banyajnya mobil Bis dan Sedan tidak mungkin negatif, sehingga:
x ≥ 0 dan y ≥ 0
sehingga model matematika untuk persoalan di atas adalah:
x ≥ 0 , y ≥ 0 dan 5x + y ≤ 200, dengan x dan y
Demikianlah pembahasan materi Pengertian Program Linear dan Model Matematika serta beberapa contoh soal serta pembahasannya. Semoga kalian semua bisa memahami dan mengerti materi ini dengan baik.